La stabilité du caryotype de l’espèce

Chaque espèce est caractérisée par son caryotype. Tous les individus d’une espèce possèdent le même nombre de chromosomes et une anomalie du caryotype a généralement de graves conséquences. La stabilité de ce caryotype doit donc être assurée, notamment lors du passage d’une génération à la suivante.

1. L’alternance d’une phase haploïde et d’une phase diploïde

1. Cellules haploïdes et cellules diploïdes

La réalisation d’un caryotype consiste à classer les chromosomes d’une cellule. Plusieurs critères sont retenus : taille des chromosomes, position du centromère, disposition de bandes de colorations. On détermine ainsi le nombre de types différents de chromosomes ; ce nombre est noté n.

- Les cellules non sexuelles, qui constituent la quasi-totalité de l’organisme, sont qualifiées de somatiques par opposition aux cellules germinales dont la destinée est de former les gamètes. Dans l’espèce humaine, la réalisation du caryotype d’une cellule somatique montre que les chromosomes peuvent être regroupés par paires de chromosomes de même type (même taille, même position du centromère, même disposition des bandes de coloration) ; les chromosomes d’une même paire sont dits homologues. Les analyses génétiques montrent que deux chromosomes homologues portent les mêmes gènes, mais que, pour chaque gène, i ne s’agit pas nécessairement des mêmes allèles (deux chromosomes homologues ne sont donc pas identiques). Une cellule somatique humaine possède deux exemplaires de l’information génétique nécessaire à l’édification de l’organisme ; elle est qualifiée de diploïde. Le caryotype est alors noté symboliquement 2n : dans le cas de l’espèce humaine, 2n = 46.

- Dans les gamètes, on ne compte qu’un seul exemplaire de chaque type chromosomique : les gamètes sont des cellules haploïdes, à n chromosomes (23 dans l’espèce humaine).

2. Le cycle biologique d’un mammifère

Chez les mammifères, comme dans beaucoup d’espèces animales, les sexes sont séparés ; les testicules des mâles produisent des spermatozoïdes, les ovaires des femelles produisent des ovules. Dans les voies génitales femelles, la fécondation entre un spermatozoïde et un ovule produit la cellule œuf ou zygote. Les cellules, qui s’agencent pour former un nouvel individu mâle ou femelle, se forment par mitoses successives à partir de ce zygote.

Comme la cellule-œuf, toutes les cellules somatiques de l’organisme sont diploïdes. Seuls les gamètes sont des cellules haploïdes. Le cycle biologique est donc marqué, du point de vue chromosomique, par deux événements majeurs : la méiose qui, dans les gonades, permet la formation de gamètes haploïdes à partir de cellules diploïdes et la fécondation qui, par union des deux gamètes haploïdes, forme une cellule-œuf diploïde. Dans un tel cycle, la méiose intervient juste avant la fécondation : la phase diploïde domine, la phase haploïde est réduite aux gamètes.

3. Le cycle biologique d’un champignon ascomycète

L’appareil végétatif des champignons est constitué de filaments plus ou moins enchevêtrés formant le mycélium. Un filament mycélien est composé d’une file de cellules qui se multiplient par mitoses, assurant ainsi la croissance du champignon. Il n’y a pas de sexes séparés, mais il arrive que deux filaments, issus du même mycélium ou de deux mycéliums différents, se rencontrent et s’unissent. La rencontre de deux filaments s’accompagne de la formation d’un petit organe globuleux et creux, de couleur sombre, le péritèche. À l’intérieur de celui-ci, les noyaux cellulaires des filaments réunis fusionnent deux à deux : il se forme ainsi des cellules-œufs. Chaque cellule-œuf subit immédiatement la méiose e : donne huit ascospores, cellules d’abord enfermées dans un sac allongé, l’asque (d’où le nom d’ascomycètes donné au groupe de champignon auquel appartient Sordaria). Les ascospores sont ensuite projetées par éclatement du péritèche : chaque spore peut germer en formant par mitoses un nouveau filament mycélien.

Le noyau de la cellule-œuf est le seul noyau diploïde du cycle. Les spores, issues de la méiose de la cellule-œuf sont des cellules haploïdes, tout comme les cellules des filaments mycéliens, formées par mitoses à partir de la spore. On parle dans ce cas d’organismes haploïdes. La méiose n’intervient donc pas ici à la formation des gamètes ; ceux-ci sont simplement des cellules du mycélium qui participent directement à la fécondation. Dans ce cycle, la méiose intervient immédiatement après la fécondation. La phase haploïde domine, la phase diploïde est réduite à la cellule-œuf.
4. Organismes diploïdes et organismes haploïdes

Dans tout cycle de reproduction sexuée, il y a donc alternance entre une phase diploïde et une phase haploïde. La méiose permet le passage de l'état diploïde à l'état haploïde, tandis que la fécondation rétablit la diploïdie. Méiose et fécondation sont donc les événements fondamentaux et complémentaires de toute reproduction sexuée. L'alternance de ces deux phases permet le maintien du caryotype de l'espèce. L'importance relative de chacune des phases varie suivant les espèces : chez les animaux et certains végétaux, la phase diploïde domine alors que chez d'autres végétaux comme Sordaria, c'est au contraire la phase haploïde qui est dominante.

2. Les modalités de la méiose et de la fécondation

1. Les étapes de la méiose

La méiose, qui succède à une phase de réplication de l'ADN, est un ensemble de deux divisions cellulaires successives : une cellule diploïde forme ainsi typiquement quatre cellules haploïdes.

- **La première division de la méiose** réalise la réduction du nombre des chromosomes. On y retrouve les phases caractéristiques de toute division cellulaire mais avec des particularités remarquables.
 - En prophase, les chromosomes doubles s'individualisent : les chromosomes homologues s'accroissent deux à deux sur toute leur longueur et s'enchevêtrent plus ou moins (les processus Associés à cet appariement et leurs conséquences génétiques sont étudiés dans le chapitre 3). Il se forme ainsi n paires de chromosomes homologues ou bivalents.
 - Cet appariement des chromosomes homologues est caractéristique de la prophase de 1ère division méiotique qui est particulièrement longue.
 - En métaphase, les chromosomes se placent dans le plan équatorial de la cellule : chaque bivalent se fixe sur une fibre du fuseau de division. Sur une fibre, il y a donc deux chromosomes homologues qui se font face.
 - En anaphase, les deux chromosomes homologues de chaque paire se disjoignent. Un lot haploïde de chromosomes doubles migre vers chacun des pôles de la cellule. Les deux lots de chromosomes sont homologues, mais non identiques ; plusieurs associations différentes peuvent donc se constituer (les conséquences génétiques de cette diversité sont envisagées dans le chapitre 3) ;
 - En télophase, les deux cellules qui s'individualisent contiennent chacune n chromosomes doubles. Aucune duplication d'ADN n'intervient donc pendant l'interphase qui précède la deuxième division.

- **La deuxième division de la méiose** s'apparente à une mitose classique qui produit deux cellules à n chromosomes simples (une seule chromatide) à partir de chaque cellule à n chromosomes doubles (à deux chromatides).
 À l'issue de la méiose, une cellule diploïde a donc produit des cellules haploïdes à n chromosomes simples (constitués d'une chromatide).

2. La fécondation, réunion de deux noyaux haploïdes

- **Chez tous les mammifères**, les modalités de la fécondation sont très comparables. Les spermatozoïdes, cellules mobiles, entourent l'ovocyte (le futur ovule n'a pas encore achevé sa méiose). L'entrée d'un spermatozoïde déclenche la reprise de cette méiose. Dans les heures qui suivent, les deux noyaux haploïdes, mâle et femelle, souvent appelés pronucleus, se rapprochent : c'est la caryogamie qui forme le noyau diploïde de la cellule-œuf. Une duplication de l'ADN intervient très rapidement et indépendamment dans chacun des pronucleus, la 1ère division de la cellule-œuf interviendra plusieurs heures après.

Divers processus, dont la formation immédiate d'une membrane de fécondation imperméable aux autres spermatozoïdes, empêchent la fécondation de l'ovule par plusieurs spermatozoïdes (si tel est le cas, le caryotype anormal ainsi constitué n'aboutit jamais à la formation d'un organisme viable).

- **Chez Sordaria**, on observe la fusion de deux filaments mycéliens et le passage des noyaux de l'un des filaments vers l'autre filament. Les noyaux cellulaires haploïdes s'unissent deux à deux et finissent par fusionner, formant ainsi des cellules-œufs diploïdes. Le filament qui donne ses noyaux est considéré comme mâle et le filament qui les reçoit comme femelle. Les cellules qui participent à cette fécondation sont donc des gamètes. Même si les aspects semblent bien différents de la fécondation des mammifères, le processus est fondamentalement le même.

- **Du point de vue chromosomique**, la fécondation est universellement l'union des noyaux haploïdes de deux gamètes pour former le noyau diploïde de la cellule-œuf.

La fécondation n'est possible qu'entre gamètes d'une même espèce (sauf quelques exceptions mais dans ces cas, les individus formés sont stériles). La reproduction sexuée maintient donc une barrière entre les caryotypes des différentes espèces et participe ainsi à la stabilité de l'espèce.
Des anomalies de la répartition des chromosomes

Dans l'espèce humaine, on connaît des caryotypes présentant des anomalies du nombre des chromosomes. La plus fréquente est la trisomie 21 qui est associée à une série de signes cliniques constituant le syndrome de Down (ou mongolisme). On connaît quelques autres exemples de trisomies et un seul type de monosomie (présence d'un seul chromosome X au lieu de deux). Le plus souvent, les conséquences de ces anomalies sont graves ce qui confirme bien l'importance d'un caryotype stable.

Ces anomalies ont pour origine une mauvaise répartition des chromosomes homologues au cours de la méiose. Une non-disjonction de deux chromosomes homologues au cours de la première ou de la deuxième division de la méiose, chez l'un ou l'autre des deux parents, produit d'une part des gamètes possédant un chromosome sur-numéraire, d'autre part des gamètes auxquels il manque un chromosome. Après fécondation avec un gamète au caryotype normal, il y a formation d'une cellule-œuf soit trisomique, soit monosomique. Cette anomalie est ensuite transmise par les mitoses successives à toutes les cellules du nouvel individu.

Des études montrent que ces anomalies sont relativement fréquentes, qu'elles concernent toutes les paires de chromosomes et que les monosomies sont statistiquement aussi nombreuses que les trisomies. Cependant, la plupart de ces anomalies sont systématiquement éliminées car les embryons formés ne sont pas viables (c'est une cause importante d'avortement spontané). Seules certaines anomalies (le plus souvent des trisomies) portant sur quelques unes des paires de chromosomes (surtout la 21) sont parfois compatibles avec la vie.

L'essentiel

- Beaucoup d'organismes animaux ou végétaux, sont diploïdes : la quasi-totalité de leurs cellules possèdent des paires de chromosomes homologues (2n chromosomes).

- Certains êtres vivants, comme Sordaria, sont haploïdes : les cellules qui les constituent possèdent un seul exemplaire de chaque type chromosomique (n chromosomes).

- Les cycles de développement sont toujours marqués par l'alternance d'une phase diploïde et d'une phase haploïde. Cette alternance est indispensable à la stabilité du caryotype de l'espèce. L'importance relative de la phase diploïde et de la phase haploïde varie suivant les groupes.

- La méiose permet le passage de la diploïdie à l'haploïdie : elle produit des cellules haploïdes à partir d'une cellule diploïde. La méiose est une succession de deux divisions cellulaires. Au cours de la première division, l'appariement des chromosomes homologues en prophase et leur disjonction en anaphase sont les singularités essentielles de la méiose qui assurent le passage à l'état haploïde.

- La fécondation rétablit la diploïdie. Quelles qu'en soient les modalités, la fécondation consiste toujours en la fusion de deux gamètes haploïdes pour constituer une cellule-œuf diploïde.
Les cycles de développement

- **cycle diploïde**
 - nouvel individu
 - mitoses
 - $2n$ cellules somatiques

- **cycle haploïde**
 - nouvel individu
 - mitoses
 - n cellules somatiques

- méiose
- gamètes
- autre parent
- fécondation
- cellule-œuf
- spore

La méiose assure le passage de la diploïdie à l'haploïdie

1. individualisation des chromosomes ($2n$)
2. appariement des chromosomes homologues
3. chaque paire se place à l'équateur du fuseau de division
4. séparation des deux chromosomes de chaque paire
5. 2 cellules à n chromosomes
6. 4 cellules à n chromosomes
Reproduction sexuée et brassage génétique

La reproduction sexuée permet à chaque descendant d’hériter d’un assortiment unique de gènes, pour moitié d’origine paternelle et pour moitié d’origine maternelle. En effet, la méiose et la fécondation réalisent un brassage génétique qui attribue à chacun une combinaison d’allèles originale, unique en son genre.

1. Dans les cellules diploïdes, deux allèles de chaque gène

1. Une hétérozygote à de nombreux locus

Du fait des mutations accumulées au cours du temps, beaucoup de gènes du patrimoine d’une espèce sont présents sous la forme de divers allèles. Dans l’espèce humaine, on estime qu’un tiers au moins des gènes sont ainsi polymorphes.

Dans les cellules diploïdes, il y a deux jeux de chromosomes : chaque gène est donc représenté dans le génome par deux allèles situés au même locus (emplacement) sur deux chromosomes homologues. Pour un gène donné, on dit qu’un individu est hétérozygote s’il possède deux allèles différents de ce gène, qu’il est homozygote si les deux allèles sont identiques.

Un chromosome porte de nombreux gènes : si, pour l’espèce humaine, on retient le nombre de 30 000 gènes (couples d’allèles) portés par 23 paires de chromosomes, cela signifie qu’il y a en moyenne 1 300 gènes par chromosome (en réalité, ce nombre dépend de la taille des chromosomes). Il est donc hautement improbable que deux chromosomes homologues soient identiques dans les conditions naturelles, l’hétérozygote pour au moins un certain nombre de locus est la règle. L’homozygote complète, c’est-à-dire l’identité des allèles pour chacun des gènes, n’est pas un cas naturel (il peut cependant être obtenu par des méthodes artificielles).

2. Les relations entre génotype et phénotype chez les diploïdes

Chez les organismes haploïdes, la relation entre génotype et phénotype est simple : pour un caractère déterminé par un gène, le phénotype correspond nécessairement à l’unique allèle qui le détermine.

En revanche, le problème se pose de savoir quel phénotype résulte du génotype chez les diploïdes. La réponse est simple pour les homozygotes : le phénotype correspond évidemment à l’allèle doublement présent. Chez les hétérozygotes, deux allèles différents sont présents et susceptibles d’intervenir dans la réalisation du phénotype. Plusieurs cas sont possibles :

- Premier cas : le phénotype résulte de l’expression d’un seul des deux allèles et ce phénotype est le même que celui d’un individu homozygote possédant cet allèle en double exemplaire. On parle alors de dominance. Au contraire, le phénotype alternative, qui nécessite que les deux allèles du gène soient identiques pour être exprimé, est qualifié de récessif.
- Troisième cas : le phénotype résulte de l’expression d’un seul des deux allèles mais la quantité de produit formé (synthèse d’enzyme par exemple) se traduit par un phénotype intermédiaire, le caractère étant moins prononcé chez l’hétérozygote que chez un individu homozygote possédant deux allèles actifs. On parle dans ce cas de dominance incomplète.

Remarque : un seul allèle permet souvent : un fonctionnement normal. C’est ainsi que les sujets hétérozygotes porteurs d’un seul allèle d’une maladie autosomique récessive ne présentent aucun symptôme de cette maladie.

Conventions d’écriture

- En génétique, le phénotype le plus couramment observé dans la nature est appelé le type « sauvage » ou « normal ». Un gène peut être symbolisé par une lettre ou une abréviation en général fondée sur le phénotype produit par une mutation de l’allèle. L’allèle non muté, responsable du type sauvage, est alors désigné par l’ajout du s gne + en exposant. Par exemple, chez la drosophile, la mutation « ailes vestigiales » sera symbolisée par vg, les ailes normales de la mouche de type sauvage seront notées vg+.
- Parfois, on utilise des lettres différentes pour désigner les allèles d’un même gène. Une lettre majuscule désigne alors un allèle dominant, une minuscule un allèle récessif.
- Un gène s’écrit entre parenthèses. Pour une cellule diploïde, les deux allèles sont séparés par deux barres obliques ou deux traits de fraction symbolisant deux chromosomes homologues. Il arrive que, par commodité, on ne mette qu’une seule barre.
- Le phénotype s’écrit fréquemment entre deux crochets.
3. L'intérêt du croisement-test

Il résulte de ce qui précède que des individus présentant un phénotype dominant peuvent être homozygotes ou hétérozygotes. Pour déterminer leur génotype, il suffit de les croiser avec des individus présentant le phénotype récessif et dont le génotype, par définition, est connu : pour présenter un phénotype récessif, un individu possède nécessairement deux exemplaires de l'allèle récessif. Les individus de cette souche-test ne produisent qu’un seul type de gamètes, possédant tous l’allèle récessif.

Deux types de résultats peuvent être obtenus à l’issue d’un tel croisement :
- si l’individu de phénotype dominant est homozygote, il ne produit lui aussi qu’un seul type de gamètes et ainsi, après fécondation, tous les individus de 1ère génération sont hétérozygotes et présentent le phénotype dominant ;
- si l’individu de phénotype dominant est hétérozygote, il produit de façon équivalente deux types de gamètes, les uns possédant l’allèle dominant, les autres l’allèle récessif : les descendants de 1ère génération sont alors pour moitié des hétérozygotes de phénotype dominant, et pour moitié des homozygotes récessifs.

Le croisement avec l’homozygote récessif permet donc une analyse génétique : il est qualifié de croisement-test.

2. Un brassage intrachromosomique

Les deux chromosomes d’une même paire portent des allèles différents à un certain nombre de locus. Au cours de la prophase de 1ère division méiotique, les chromosomes homologues s’apparentent et s’échangent. Il se produit alors des échanges de segments entre ces chromosomes. Ce phénomène est le crossing-over : un allèle d’un chromosome peut ainsi être échangé avec l’allèle porté par le chromosome homologue. Tous les gènes situés sur une paire de chromosomes peuvent être « brassés » grâce aux crossing-over, ce qui modifie l’association d’allèles portée par chacun des chromosomes. Ce brassage entre allèles d’une paire d’homozygotes est qualifié d’intrachromosomique. Il augmente considérablement la diversité des gamètes produits : en effet, il y aura en anaphase I non pas deux possibilités pour chacune des paires de chromosomes, mais une multitude à cause des crossing-over précédemment advenus au cours de la prophase I.

3. La recombinaison de deux gènes

Si l’on considère deux gènes, deux cas peuvent être distingus :
- les deux gènes sont situés sur deux paires distinctes de chromosomes (gènes indépendants) ;
- les deux gènes sont situés sur la même paire de chromosomes (gènes liés).

Un croisement-test réalisé entre hétérozygotes et homozygotes récessifs (pour les deux gènes) donne des résultats différents dans ces deux situations :
- si les deux gènes sont indépendants, l’hétérozygote produit avec une probabilité égale quatre types de gamètes différents. Il y aura alors en 1ère génération, quatre phénomences en même proportion. Deux sont identiques aux parents, deux sont nouveaux, associant un caractère d’un parent et un caractère de l’autre parent : ils sont qualifiés de recombinés.
Si les deux gènes sont liés, l'hétérozygote produit des gamètes de type parental mais aussi des gamètes recombinés résultant de crossing-over. La proportion de gamètes recombinés dépend du nombre de méiose pour lesquelles il s'est produit un crossing-over entre les deux gènes considérés. Les quatre phénotypes formés en 1^{ère} génération ne seront alors pas équiprobables.

La réalisation d'un croisement-test est donc une méthode d'analyse génétique : les résultats obtenus révèlent très exactement les types et les proportions de gamètes produits par l'individu testé. Ce croisement permet notamment de déterminer si deux gènes sont liés ou non.

3 La fécondation amplifie le brassage génétique

Dans les conditions naturelles, les deux parents d'un couple sont l'un et l'autre hétérozygotes pour un certain nombre de gènes et sont génétiquement différents. Par méiose, chaque parent produit une grande diversité de gamètes dont les bagages génétiques sont tous différents entre eux et différents de ceux des gamètes produits par l'autre parent. La fécondation réunit deux gamètes au hasard : chaque spermatozoïde du mâle est susceptible de s'unir à n'importe quel type d'ovule produit par la femelle. Par rapport à la diversité des gamètes produits (aussi importante dans un sexe que dans l'autre), le nombre d'assortiments chromosomiques et par conséquent de combinaisons génétiques possibles pour la cellule—œuf est donc élevé à la puissance 2.

La méiose et la fécondation réalisent un brassage génétique qui assure l'originalité et la diversité des descendants. Pour un nombre de chromosomes et de gènes tel que ceux existant dans l'espèce humaine, on estime que le nombre théorique d'enfants génétiquement différents qu'un seul couple peut concevoir est supérieur au nombre d'atomes de l'Univers !

L'essentiel

- La variabilité allélique au sein de l'espèce se manifeste chez l'individu par une hétérozygote pour de nombreux gènes.

- Chez les diploïdes, le phénotype peut soit être déterminé par un seul des deux allèles, soit correspondre à l'expression simultanée des deux allèles.

- Chez les haploïdes comme chez les diploïdes, la méiose permet la ségrégation des deux allèles de chaque gène.

- Le brassage intrachromosomique est une recombinaison homologue entre les gènes d'une même paire de chromosomes. Il est réalisé par crossing-over au cours de la prophase de 1^{ère} division méiotique.

- Le brassage interchromosomique est dû à la migration indépendante des chromosomes homologues de chaque paire lors de l'anaphase de la première division de la méiose.

- La fécondation réunit au hasard les gamètes et amplifie le brassage génétique dû à la méiose.

- L'analyse de croisements-tests expérimentaux permet de déterminer le nombre de gènes impliqués dans la réalisation d'un phénotype et de préciser leur localisation chromosomique.

- La reproduction sexuée a pour conséquence l'unicité des individus au sein des populations.
La méiose assure un brassage génétique

Brassage intrachromosomique

Brassage interchromosomique

L'intérêt du croisement-test

- **hétérozygote pour deux gènes**
- **homozygote récessif pour deux gènes**

2 gènes situés sur le même chromosome :

- 2 types de gamètes majeures +
- 2 types de gamètes minuscules

2 gènes situés sur des chromosomes différents :

- 4 types de gamètes équiprobables
- Un seul type de gamètes

4 phénomètopes équiprobables

4 phénomètopes non équiprobables

La fécondation amplifie le brassage génétique

- **Diversité des gamètes mâles**
- **Diversité des gamètes femelles**

Diversité des cellules-œufs = (diversité des gamètes)²
La fonction de reproduction chez l’homme

Dans le chapitre précédent, nous avons vu, qu’au cours du développement embryonnaire, l’appareil génital se développe suivant le phénomène mâle sous l’action d’hormones sécrétées par les testicules. En l’absence de ces hormones, c’est un sexe phénoménique femelle qui s’établit. Beaucoup plus tard, à la puberté, ces appareils génitaux deviennent fonctionnels et assurent la fonction de reproduction. Quelles sont les fonctions du testicule adulte ? Comment son activité est-elle contrôlée ?

1. Les fonctions du testicule adulte

Chez le mammifère mâle adulte, le testicule remplit une double fonction. Il assure :
- d’une part, la production de spermatozoïdes (spermatoogénèse) au niveau des tubes séminifères ;
- d’autre part, la sécrétion d’hormone mâle ou testostérone réalisée par les amas de cellules interstitielles logés entre les tubes séminifères.

1.1. Le testicule, « usine à spermatozoïdes »

- Une production massive de cellules sexuelles très spécialisées
 Tout au long de sa vie, un homme produit de l’ordre de mille milliards de spermatozoïdes. Au cours de leur transit dans l’appareil génital masculin, ces cellules reçoivent les sécrétions des glandes annexes qui représentent 80 à 90 % du volume du sperme émis au moment de l’éjaculation. Ce liquide contient de 50 à 100 millions de spermatozoïdes par millilitre.

 Les spermatozoïdes sont ces cellules très différenciées : mobiles grâce à leur flagelle, ces cellules sont spécialisées pour apporter jusqu’au gamète femelle le matériel génétique contenu dans leur « tête ».

- Une production continue dans la paroi des tubes séminifères
 Chaque testicule contient des centaines de tubes séminifères pelotonnés. C’est dans l’épaisseur de la paroi de ces tubes que se déroule la spermatoogénèse, c’est-à-dire la formation des spermatozoïdes. Des cellules germinales souches situées à la périphérie des tubes se multiplient très activement par mitoses. Une partie des cellules formées se transforme progressivement en s’enfonçant dans la paroi des tubes. Au cours de cette progression, les cellules subissent la méiose, ce qui assure l’haploïdie des gamètes mâles. Ces derniers sont finalement libérés dans la lumière des tubes séminifères ; ils gagnent alors l’épididyme où ils sont stockés et où ils acquièrent leur mobilité.

Dans la paroi des tubes séminifères, les cellules germinales sont associées à des cellules dites de Sertoli qui interviennent de façon complexe dans la spermatogénèse (rôle nourricier, de soutien, mais aussi mécanismes hormonaux).

2. Le testicule, glande génitale endocrine

- Des périodes importantes de la vie
 Nous avons déjà signalé l’importance de la sécrétion par le testicule d’hormone mâle dès les premiers stades du développement de l’appareil génital. La deuxième période « clé » est celle de la puberté. C’est au cours de cette période que s’achève normalement le développement des organes sexuels et que débute la production de spermatozoïdes. La mise en place à l’adolescence des caractères sexuels secondaires (pilosité de type « adulte », musculature plus développée, timbre de voix plus grave, libido, etc.) est la conséquence d’une reprise de la sécrétion d’hormone mâle.

- La production d’hormone mâle
 L’hormone mâle ou testostérone est une molécule synthétisée par les cellules interstitielles du testicule ou cellules de Leydig. Comme toutes les hormones, elle est déversée dans le sang et agit sur les organes dont les cellules possèdent des récepteurs spécifiques : glandes annexes de l’appareil reproducteur, mais aussi musculature, centres nerveux… L’hormone mâle est aussi une des hormones indispensables à la spermatogénèse ; elle stimule les cellules des tubes séminifères et apparaît donc indispensable à la reproduction.

- Une sécrétion à taux « globalement » constant
 Chez l’homme adulte, la production de testostérone est globalement stable pendant toute la vie, stabilité attestée par un taux sanguin moyen de cette hormone relativement constant.

En réalité, des études plus précises révèlent que la sécrétion est discontinue : des épisodes brèfs (quelques minutes) de sécrétion intense (ou pulses) sont séparés par des intervalles de quelques heures pendant lesquels la sécrétion est interrompue. La concentration sanguine fluctue ainsi de façon périodique : maximale au moment du pulse, elle décroît ensuite au fur et à mesure de la dispa-
La régulation du taux des hormones sexuelles mâles

1. L’hypophyse commande le testicule

Des expériences d’ablation de l’hypophyse montrent que cette petite glande endocrine située sous l’encéphale est indispensable au fonctionnement du testicule. L’hypophyse sécrète deux hormones agissant sur les gonades et appelées pour cela gonadostimulines :
- La LH stimule les cellules de Leydig ; cette stimulation est indispensable à la production de testostérone. Des dosages hormonaux précis montrent que LH est sécrétée de façon pulsatile, chaque pulse déclenchant un pulse de testostérone.
- La FSH active indirectement la spermatogenèse ; elle stimule en effet les cellules de Sertoli qui interviennent comme intermédiaires entre testostérone et cellules germinales. La sécrétion de FSH est elle-même pulsatile et synchronisée à celle de LH.

Les deux gonadostimulines hypophysaires, LH et FSH, sont donc nécessaires à un déroulement normal de la spermatogenèse. Comment cette sécrétion hypophysaire est-elle contrôlée ?

2. L’hypophyse est sous le contrôle de l’hypothalamus

- Une neurohormone stimulante
La glande hypophysaire est suspendue par une tige à l’hypothalamus, zone nerveuse de la base de l’encéphale.

Des destructions de groupes de neurones hypothalamiques entraînent un arrêt de la production des gonadostimulines hypophysaires. La stimulation électrique convenable de ces mêmes groupes de neurones active au contraire la sécrétion des gonadostimulines. L’étude précise de ces neurones montre :
- qu’ils émettent de façon rythmique des bouffées de potentiels d’action ;
- que cette activité déclenche la sécrétion pulsatile d’une hormone nommée gonadolibérine ou GnRH.
C’est au niveau de la tige hypophysaire que les extrémités axoniques des neurones, en contact avec les capillaires sanguins, déversent cette substance dans le sang ; ce dernier assure ensuite le transport rapide de la GnRH jusqu’aux cellules de l’ante-hypophyse toutes proches.

Les pulses de GnRH stimulent les cellules hypophysaires à FSH et les cellules à LH, déclenchant des pulses de gonadostimulines : la GnRH est une neurohormone.

- Un système de commande hiérarchisé
Comme tous les neurones, les neurones hypothalamiques sécréteurs de GnRH sont en contact synaptique avec de multiples autres neurones situés dans différentes régions de l’encéphale : ils sont ainsi soumis en permanence à une pluie de neurotransmetteurs, excitateurs ou inhibiteurs, qui contrôlent la sécrétion de GnRH.

La libération dans le sang des gonadostimulines FSH et LH n’intervient qu’à la suite de pulses de GnRH, et les pulses de LH déclenchent des pulses de testostérone. La production finale de testostérone étant sensiblement stable, il faut en conclure que l’activité du système de commande est elle-même soumise à un contrôle efficace. Comment s’exerce-t-il ?

3. L’importance du rétrocontrôle

Quelques observations expérimentales permettent de comprendre un aspect important de ce contrôle :
- la castration bilatérale d’un mâle adulte est suivie d’une élévation des productions de gonadostimulines hypophysaires ;
- l’injection massive de testostérone stoppe les pulses de GnRH (et par suite, les pulses de FSH et de LH) ;
- les neurones sécréteurs de GnRH possèdent des récepteurs à la testostérone. Il résulte de ces constatations que la testostérone exerce en permanence un effet en retour sur le système de commande hypothalamo-hypophysaire. Un tel système est désigné sous le nom de rétrocontrôle.

Ce rétrocontrôle est qualifié de négatif car il tend à corriger chaque variation, assurant ainsi la stabilité des productions hormonales : toute hausse du taux de testostérone exerce un effet modérateur sur le système hypothalamo-hypophysaire (inversement, une baisse du taux de testostérone stimule les sécrétions du complexe hypothalamo-hypophysaire).

3. Le taux des hormones sexuelles, un système réglé

1. Une organisation commune aux systèmes régulateurs
D’une façon générale, les différents paramètres physiologiques sont soumis à une régulation : c’est le cas de la régulation de la glycémie étudiée en Première S.
L'organisation d'un système régulant obéit toujours à quelques principes simples :
- la valeur du paramètre à régler est nécessairement détectée par un mécanisme capable de comparer la valeur mesurée à une valeur de référence (la "valeur normale" ou valeur de consigne) ;
- lorsque la valeur mesurée s'écarte de la valeur de consigne, le fonctionnement du système régulant est modifié ;
- le résultat est une correction de l'écart, le paramètre régulé retrouvant sa valeur de consigne.

Le contrôle est donc assuré par un ensemble d'ajustements successifs : il s'agit d'une régulation dynamique qui est caractéristique du fonctionnement d'un servomécanisme, c'est-à-dire d'un mécanisme réalisant en autonomie un certain programme d'action, à la suite d'une comparaison entre les consignes qu'il possède et le travail qu'il exécute.

2. Un équilibre hormonal autorégulé

Dans le cas du système régulant la fonction de reproduction, le paramètre régulé est la concentration plasmatique de testostérone (testostéronémie), le système régulant (capteurs, centre intégrateur, messagers et effecteurs) est représenté par le complexe hypothalamo-hypophytaire et les testicules (cellules interstitielles).

En simplifiant beaucoup, on peut considérer que la régulation du taux des hormones sexuelles mâles fait intervenir deux systèmes endocrines qui interagissent : le complexe hypothalamo-hypophytaire stimule le testicule endocrine qui, en retour, exerce un rétrocontrôle négatif sur la sécrétion des gonadostimulines. Une telle organisation tend spontanément à amortir les variations des concentrations hormonales.

Par exemple, une hausse du taux de testostérone accentue le freinage du système de commande ; la production de gonadostimulines fléchit alors et le testicule, moins stimulé, abaisse sa production. L'ensemble du mécanisme hormonal est donc autorégulé. Il tend à conserver une valeur de la concentration de testostérone proche de la valeur de consigne.

L'essentiel

- Les testicules ont une double fonction : les tubes séminifères produisent les spermatozoïdes et les cellules interstitielles (ou cellules de Leydig) sécrètent, dans le sang, une hormone, la testostérone. Cette hormone est responsable du développement des organes génitaux, de l’apparition des caractères sexuels secondaires lors de la puberté ; elle est ensuite indispensable à la spermatogenèse et au maintien des caractères sexuels. La sécrétion de testostérone est pulsatile mais le taux de testostérone est globalement constant.

- Le fonctionnement du testicule est stimulé par deux hormones hypophysaires, les gonadostimulines FSH et LH : LH déclenche la sécrétion de testostérone ; FSH agit indirectement sur les cellules germinales, par l’intermédiaire des cellules de Sertoli. La sécrétion des gonadostimulines est pulsatile, chaque pulse de LH déclenchant un pulse de testostérone.

- Les sécrétions hypophysaires sont elles-mêmes stimulées par une hormone, la gonadolibéroline ou GnRH produite par des groupes de neurones de l’hypothalamus. Cette substance est déversée dans le sang de la tige hypophysaire de façon pulsatile ; elle déclenche alors les pulses de FSH et de LH.

- Le testicule exerce un contrôle sur la sécrétion des gonadostimulines. Ce mécanisme de rétrocontrôle négatif assure une autorégulation des productions hormonales : les écarts par rapport aux valeurs de référence sont automatiquement corrigés.

- La régulation de la fonction de reproduction est assurée par un servomécanisme biologique : le fonctionnement du système régulant est asservi aux variations du paramètre réglé, la testostéronémie.
Les testicules assurent une double fonction

- La production de spermatozoïdes.
- La sécrétion de testostérone.

La production de spermatozoïdes est continue.

Des pulses réguliers de testostérone, d’où un taux plasmatique « globalement constant »

La sécrétion se fait sur un mode pulsatile.

La régulation fait intervenir trois niveaux de contrôle

- La concentration plasmatique de testostérone est le paramètre régulé.
- La régulation est modulée par des messages de l’environnement (l’hypothalamus est un capteur et un centre intégrateur).

Le taux sanguin de testostère garde une valeur globalement stable grâce à la mise en jeu d’un système de régulation par rétroaction négative.
La fonction de reproduction chez la femme

Le fonctionnement de l'appareil reproducteur masculin dépend de contrôles hormonaux complexes organisés en plusieurs niveaux. L'ensemble est auto-régulé grâce à des interactions entre les testicules et le système de commande hypothalamo-hypophysaire. Les mécanismes hormonaux sont-ils comparables chez la femme ?

1. Le déroulement des cycles sexuels féminins

Chez la femme, le fonctionnement cyclique de l'appareil génital débute à la puberté et s'achève à la ménopause. L'événement le plus apparent du cycle est la menstruation (ou règles) qui marque le début de chaque cycle.

1.1. Le cycle de l'endomètre utérin

L'utérus est l'organe où se développe un éventuel embryon. Il est constitué d'un muscle, le myomètre, tapissé intérieurement par la muqueuse utérine, ou endomètre, qui borde la cavité utérine.
- Dans la première moitié du cycle, l'endomètre, qui a été détruit presque entièrement au cours de la menstruation, se reconstitue et s'épaissit de plusieurs millimètres. Des glandes en tubes apparaissent, se ramifient et les vaisseaux sanguins deviennent nombreux.
- Dans la deuxième moitié du cycle, le développement de l'endomètre atteint son maximum vers le 21e jour du cycle. Des coupes microscopiques montrent alors un aspect qualifié de « dentelle utérine ». La muqueuse est alors prête à accueillir un embryon.

2. Le cycle ovarien

À chaque cycle, l'un des deux ovaires libère un gamète, l'ovocyte. C'est le résultat de l'évolution d'un follicule ovarien (voir dessin ci-contre).
- Au début du cycle, un follicule cavitare qualifié de dominant se développe de façon rapide et achève sa croissance tandis que ceux qui avaient aussi commencé à grossir au cours des cycles précédents dégénèrent. Cette première phase du cycle, nommée phase folliculaire, à une durée variable : 12 à 18 jours.
- L'ovulation marque la fin de la phase folliculaire : elle correspond à l'éclatement du follicule mûr et à l'expulsion de l'ovocyte.
La fonction de reproduction chez la femme

Chapitre 3

Le complexe hypothalamo-hypophyso-phéridien contrôle l'activité des ovaires

1. Une commande hormonale à deux niveaux

Le système de commande des ovaires est le même que celui utilisé chez l'homme mais les modalités de fonctionnement ne sont pas identiques.

2. Le rétrocontrôle positif de l'ovulation

La production de gonadotrophines augmente considérablement en fin de phase folliculaire. L'ovulation est déclenchée par le corps jaune. Cela détecte la production de gonadotrophines, et la LH stimule la production de progesterone par le corps jaune. En fin de phase folliculaire, la LH stimule la production de progesterone par le corps jaune.

3. La synchronisation des cycles ovariens et lutéins produits

Le cycle folliculaire commence à la maturité de la synaphe. Le cycle folliculaire dépend des cellules de la théca et de la graisse des follicules en croissance. Cette sécrétion est responsable de la prolifération et de l'activation de l'ovocyte. En fin de phase folliculaire, l'augmentation de l'ovocyte et du nombre de cellules du follicule domine et provoque un arêt de l'évolution cyclique de l'œuf.

En fin de phase folliculaire, le corps jaune produit estrogènes et progestérone en quantités importantes, ce qui provoque un arrêt de l'évolution cyclique de l'œuf et la transformation du follicule en corps jaune.

En phase lutéique, les estrogènes et les progestérone sont produits par l'ovocyte et le corps jaune. La LH stimule la production de progesterone par le corps jaune. Les variations hormonales affectent les cellules des ovaires, et la production de progesterone est déclenchée par la LH.

Le caractére cyclique des sécrétions hormonales est un phénomène crucial dans la régulation de la période ovulatoire. Ces variations hormonales affectent les cellules de l'ovocyte et le corps jaune, et provoquent l'ovulation. En fin de phase folliculaire, l'ovocyte domine et provoque un arrêt de l'évolution cyclique de l'œuf. En phase lutéique, la LH stimule la production de progesterone par le corps jaune.
Alors qu’une rétroaction négative devrait s’intensifier et freiner davantage la sécrétion des gonacostimulines, il n’en est rien : les sécrétions de FSH et surtout de LH augmentent.

Des études expérimentales ont montré que lorsque la concentration en œstrogènes dépasse une certaine valeur « seuil », la rétroaction devient positive : les cellules hypophysaires, en présence de GnRH, sont sensibilisées par ces doses élevées d’estradiol et les sécrétions de gonadostimulines « s’embrallent ». Tout se passe comme si le pic pré-ovulatoire d’œstrogènes (2 jours avant l’ovulation) était un « signal » indiquant que le follicule est mûr. Le système de commande « répond » alors par un pic de LH qui déclenche l’ovulation. Immédiatement après, la rétroaction devient négative : en phase lutéale, la progestérone impose un rétrocontrôle négatif, quelle que soit la quantité d’œstrogènes.

• Une régulation par « servomécanisme »

Alors que chez l’homme, la « valeur de consigne » du taux sanguin de testostérone reste constante pendant la période d’activité sexuelle, c’est la femme les taux sanguins hormonaux varient tout au long du cycle et la régulation de ces taux fonctionne comme un servomécanisme. En technologie, on appelle servomécanisme un dispositif qui permet de changer intentionnellement la valeur de consigne au cours du temps : un exemple simple est le mécanisme qui permet de faire varier de manière cyclique la température d’un appartement (20 °C le jour, 15 °C la nuit en vue de réaliser des économies d’énergie). Chez la femme, tout se passe donc comme si un système de commande extérieur au système régulant (hypothalamus – hypophysaire – ovaire), une véritable horloge biologique, modifiait la « valeur de consigne » des taux hormonaux tout au long du cycle.

L’essentiel

• Le fonctionnement de l’appareil génital féminin se caractérise par une activité cyclique qui se maintient de la puberté jusqu’à la ménopause.

• Le cycle ovarien correspond d’une part à l’évolution d’un follicule qui, après l’ovulation, se transforme en corps jaune, d’autre part à la sécrétion périodique d’hormones ovariennes : œstrogènes en phase folliculaire, puis œstrogènes et progestérone en phase lutéale.

• Le cycle utérin correspond à une évolution périodique de la muqueuse ou endomètre qui, après chaque ovulation, est prête à accueillir un éventuel embryon.

• La production des hormones ovariennes est contrôlée par le complexe hypothalamo-hypophysaire. L’hormone hypothalamique GnRH stimule la libération des gonadostimulines hypophysaires FSH et LH ; ces dernières stimulent le fonctionnement ovarien.

• L’activité du système de commande est modulée par un jeu complexe de rétrocontrôles exercés par les hormones ovariennes. De façon générale, ces rétroactions sont négatives tout au long du cycle. En fin de phase folliculaire, la rétroaction devient positive : le pic d’œstrogènes déclenche la décharge ovulante de LH.

• Chez la femme, les taux sanguins hormonaux varient tout au long du cycle et la régulation de ces taux fonctionne comme un servomécanisme.
La fonction de reproduction chez la femme

La synchronisation des cycles sexuels féminins

- Le cycle des hormones hypothalamo-hypophysaires

Comme chez l'homme, la sécrétion hormonale est pulsatile. Le rythme des pulses, variable, est maximal à la période de l'ovulation.

- Le cycle ovarien

- Le cycle utérin

L'évolution périodique de la muqueuse utérine c'est une part, de la glaire cervicale d'autre part sont sous le dépendance des hormones ovarienes.

Des rétrocontrôles positifs ou négatifs

- Phase folliculaire
- Ovulation
- Phase lutéale
Les hormones sexuelles produites par les gonades ont des rôles multiples. Par leur action sur le comportement sexuel, elles contribuent au succès de la procréation et favorisent la rencontre des gamètes. Par ailleurs, une profonde modification des équilibres hormonaux est nécessaire au bon déroulement de la grossesse.

1. Hormones et comportement sexuel

- **Chez les mammifères non hominidés**
 Dans la plupart des espèces, il existe une relation directe entre comportement sexuel et sécrétions hormonales :
 - chez la femelle, l'acceptation du mâle qui caractérise le comportement d'œstrus (ou « chaleurs ») est déterminée par l'élévation de la sécrétion des hormones œstrogènes ;
 - chez le mâle, le comportement de rut coïncide avec une hausse de la production de testostérone et il est en outre souvent déclenché par des stimuli émis par la femelle (odeur...).

 L'environnement influence le fonctionnement de l'axe gonadotrope : c'est ainsi qu'on a pu montrer l'importance des conditions d'éclairage responsables du caractère saisonnier de l'activité sexuelle. Le système de commande hypothalamo-hypophysaire intégré à tout moment les rétroactions exercées par les hormones ovariennes et l'influence des stimuli d'origine externe ou interne.

- **Dans l'espèce humaine**
 Chez l'Homme, la relation entre hormone et comportement sexuel est moins étroite. Si le développement de la libido à partir de la puberté est bien lié à l'augmentation des concentrations plasmatiques des hormones sexuelles, l'Homme est capable de maîtriser sa procréation et de dissocier, au moins partiellement, son comportement sexuel de son activité hormonale.

2. La rencontre des gamètes

La rencontre des gamètes a lieu dans le tiers supérieur des trompes. Pour cela, les spermatozoïdes déposés dans le vagin lors d'un rapport sexuel doivent tout d'abord franchir le col de l'utérus obturé par la glaire cervicale. En dehors de la période de l'ovulation, la glaire cervicale est pratiquement infranchissable du fait de son maillage serré. Grâce aux œstrogènes sécrétés en période d'ovulation, cette glaire devient beaucoup plus lâche : sa structure facilite alors l'ascension des spermatozoïdes à travers le col de l'utérus. Les spermatozoïdes remontent ensuite les voies génitales de la femme en nageant dans les sécrétions de l'utérus et des trompes.

La période où la fécondation peut avoir lieu dépend de la durée de vie des gamètes dans les voies génitales féminines : 24 à 36 heures pour l'ovocyte après son expulsion de l'ovaire, 4 à 5 jours pour les spermatozoïdes.

3. La fécondation et le début de la grossesse

- **Le devenir immédiat de la cellule-œuf**
 L'union d'un spermatozoïde et d'un ovocyte aboutit à la formation d'une cellule-œuf à l'origine de l'embryon. Cet œuf migre lentement vers l'utérus en se divisant en 2, puis 4, 8, 16 cellules... Au bout de 4 jours, la masse cellulaire a atteint l'utérus et commence à s'organiser pour donner une première épaisse membrane embryonnaire nommée blastocyste. Vers le septième jour après la fécondation, ce blastocyste s'implante dans l'endomètre utérin, c'est la nidation. La grossesse commence véritablement.

- **Les modifications hormonales du début de grossesse**
 Peu après la nidation (environ neuf jours après la fécondation), le tout jeune embryon commence à produire une hormone, l'HCG (Gonadostimuline Chorionique Humaine). Cette hormone, « mime » l'action de LH : elle stimule le maintien du corpus jaune et la production de progestérone. Ainsi, le taux sanguin de progestérone augmente considérablement au début de la grossesse ce qui assure la persistance de la structure de l'endomètre utérin et, par là même, la survie de l'embryon. La non survenue des règles peut donc annoncer le début d'une grossesse. Pour le vérifier, on utilise des tests de grossesse dont le principe est de détecter l'hormone HCG produite par le jeune embryon. Comme toute hormone, elle est dégradée dans l'organisme mais éliminée dans les urines. La grande sensibilité des tests les plus récents permet de détecter l'HCG dans les urines deux à trois jours avant la date supposée des règles.
La relation entre comportement sexuel et sécrétions hormonales est directe chez les mammifères ron hominidés. Dans l’espèce humaine, le comportement sexuel est partiellement dissocié de l’activité hormonale.

La fécondation est possible lors d’une brève période entourant l’ovulation ; elle intervient dans la partie supérieure des trompes. Par leur action sur les sécrétions utérines, les hormones ovariennes facilitent cette rencontre des gamètes.

L’implantation du futur embryo dans la muqueuse utérine marque le début de la grossesse. Le jeune embryo élaboré une hormone, l’HCG, responsable d’une intense production de progestérone donc du maintien de la muqueuse utérine. C’est cette hormone qui peut être détectée très tôt par les tests de grossesse.
La maîtrise de la procréation

Depuis plusieurs décennies, le nombre d’enfants par femme a diminué, en Europe comme dans les autres pays du Monde. Cette diminution est à attribuer au développement de la contraception. Parallèlement, les progrès des connaissances et des techniques assurent un meilleur suivi des grossesses et permettent à certains couples infertiles de réaliser leur désir d’enfant.

En conséquence, l’ovaire est mis au repos et la croissance des follicules est bloquée.
Sans croissance folliculaire, il ne peut pas y avoir maturation de l’ovocyte et, de toute façon, l’ovulation est impossible sans pic de LH. Enfin, l’absence de follicule mûr et de corps jaune empêche une production d’estrogènes et de progestérone en grande quantité : les taux hormonaux restent donc bas en permanence.

- D’autres actions des hormones de synthèse
Les ovaires ne produisent presque plus d’hormones mais le sang contient celles apportées par la pilule. La muqueuse utérine va donc subir une croissance à peu près normale. Comme la prise de pilule est interrompue pendant une semaine, les taux sanguins des hormones de synthèse chutent, ce qui déclenche les règles.

L’action contraceptive s’exerce également sur la glaire cervicale qui empêche les spermatozoïdes de franchir le col de l’utérus.

La contraception hormonale présente une efficacité proche de 100 %, les rares échecs provenant essentiellement d’oubli ou de retards dans les prises de pilule. Cette grande efficacité est due au triple verrou exercé par la pilule estroprogestative : inhibition de l’ovulation, délaissement périodique de la muqueuse utérine et blocage des spermatozoïdes par la glaire cervicale.

Remarque : Des recherches sont actuellement menées pour mettre au point une pilule masculine. Certaines étudient la possibilité de bloquer, par rétrocontrôle négatif, la spermatogénèse sans porter atteinte à la libido. Divers obstacles restent néanmoins à surmonter.

1. La contraception hormonale

- Différents types de pilules
Les pilules contraceptives existant sur le marché sont toutes destinées aux femmes : elles contiennent des hormones de synthèse dérivées de l’œstradiol et de la progestérone.
Il existe plusieurs types de pilules contenant soit des progestatifs seuls, soit une combinaison œstrogènes/progestatifs. La posologie habituelle correspond à une prise quotidienne de pilule pendant 21 jours suivie d’un arrêt de 7 jours.

Ces pilules sont délivrées sur prescription médicale chez un médecin ou, gratuitement, dans un centre de planning familial. Elles peuvent être délivrées aux mineures sans autorisation parentale.

- La pilule impose un rétrocontrôle négatif permanent.
Les hormones de synthèse absorbées exercent une rétroaction négative sur le complexe hypothalamo-hypophysaire. Les gonadotrophines (LH et FSH) sont alors très faiblement sécrétées.
3. L'interruption volontaire de grossesse (IVG)

- Une pratique réglementée
Depuis 1975, l’IVG est autorisée en France. Le délai maximal pendant lequel cette interruption peut être pratiquée a été porté en 2001 à 12 semaines de grossesse (soit 14 semaines après les dernières règles).

Pour les mineures, il est prévu que le consentement ou l’avis d’un des parents reste souhaitable, mais qu’il n’est pas obligatoire si la mineure se fait accompagner dans sa démarche par une personne majeure de son choix.

Notons que, pour des raisons médicales, l’IVG est autorisée pendant toute la durée de la grossesse : c’est le cas par exemple si la poursuite de cette grossesse met la mère en danger ou si le fœtus est atteint d’une maladie particulièrement grave.

- Une méthode médicamenteuse
L’IVG classique se fait par aspiration de l’embryon, mais une alternative « chimique » peut être proposée avant la 9e semaine de grossesse. Il s’agit de l’administration d’une molécule, le RU-486, qui présente une partie analogue à la molécule de progestérone. Ainsi, le RU-486 peut se fixer sur les récepteurs de la progestérone des cellules utérines, mais n’a pas les effets de l’hormone : cette molécule est ainsi une antihormone qui s’oppose à l’action de la progestérone. Pour la muqueuse utérine, ceci constitue un signal de destruction au même titre que la chute des taux d’hormones ovariennes qui interviennent normalement en fin de cycle. La grossesse est donc stoppée, d’où le nom de pilule abortive donné à ce médicament.

Notons que des problèmes existent pour les deux membres du couple dans 40 % des cas et que, pour 7 % des couples, aucune cause ne peut être identifiée.

2. Un éventail de techniques pour traiter l’infertilité

- Le don de gamètes et d’embryons
Cette solution est réservée aux cas de stérilité totale (impossibilité de production de gamètes par un des membres du couple au moins) ou si une maladie grave risque d’être transmise à l’enfant.

En France, le don est anonyme et gratuit. Des informations sur le phénotype du donneur (couleur de la peau, des yeux, des cheveux, etc.) sont néanmoins accessibles. Du point de vue légal, les couples recevant un don sont les seuls parents du futur enfant.

- L’insémination artificielle
Cette technique permet de pallier des problèmes liés à la qualité du sperme (manque de mobilité des spermatozoïdes ou oligospermie modérée par exemple). Le sperme est préparé pour sélectionner les spermatozoïdes les plus mobiles puis déposé dans la cavité utérine. Cette technique est simple, mais présente un taux de réussite faible de l’ordre de 15 % qui nécessite souvent plusieurs tentatives.

L’insémination peut être réalisée à partir du sperme d’un donneur conservé par congélation, mais la loi française interdit à une femme d’utiliser le sperme congelé de son mari décédé.

- La stimulation ovarienne
Elle est pratiquée en cas de dysfonctionnement de l’ovaire mais aussi pour obtenir des ovocytes en vue d’une fécondation in vitro.

Un traitement hormonal adapté stimule la maturation de plusieurs follicules puis déclenche l’ovulation. Comme il y a un risque de grossesse multiple, le nombre de follicules matures est suivi par échographie.

- La fécondation in vitro
Cette technique est indiquée dans le cas d’une obturation des trompes ou dans celui de sperme de qualité très médiocre.

Les ovocytes prélevés par ponction sont mis en contact avec les spermatozoïdes dans un récipient et la fécondation se fait spontanément.

La technique de l’ICSI, réalisée sous microscope, permet d’injecter directement un spermatozoïde dans un ovocyte. On peut ainsi résoudre des problèmes d’oligospermie ou d’azoospermie sévères.
Après la fécondation et les premières divisions cellulaires, des embryons sont transférés dans la cavité utérine. L’implantation limite le succès de la fécondation in vitro avec seulement 10 % de réussite par embryon. C’est pourquoi on en transfère deux ou trois, pour augmenter les chances de succès (avec toutefois un risque de grossesse multiple). Les embryons non transférés sont congelés en vue d’une utilisation ultérieure, mais ceux non utilisés posent des problèmes éthiques quand à leur devenir : destruction, don, abandon, utilisation à des fins de recherche médicale.

Enfin, il est possible de tester les embryons obtenus pour rechercher la présence d’allèles responsables de maladies graves. Ce diagnostic préimplantatoire permet de sélectionner des embryons sains. Il n’est actuellement réalisé que sur des couples à risque issus de familles ayant eu des antécédents pour une maladie précise. Les lois de bioéthique devront dans l’avenir répondre aux craintes de dérives eugénistes dans ce domaine.

3. La surveillance de la grossesse

- Des examens échographiques
En France, trois examens échographiques sont préconisés. Cette méthode d’exploration par ultrasons permet d’obtenir une image du fœtus et de déceler ainsi d’éventuelles anomalies.

- Des examens sanguins
Dans le cas de la trisomie 21, l’ensemble des facteurs de risque (échographie, âge de la mère, test sanguin, etc.) permet de calculer un risque global. Si celui-ci est trop élevé, un diagnostic prénatal peut être proposé. Des cellules fœtales sont alors prélevées et serviront pour l’établissement d’un caryotype ou pour un dépistage génétique. Ce protocole réalisé précocement permet un recours à l’avortement si les parents le souhaitent.

Ces progrès incontestables ne doivent cependant pas créer l’illusion d’une maîtrise complète de la procréation et de la grossesse. De plus, le destin biologique d’une personne est loin d’être définitivement fixé dès sa naissance.

L’essentiel

- Il existe plusieurs moyens de contraception. La contraception hormonale féminine, la plus répandue et la plus efficace, s’appuie sur la connaissance du contrôle hormonal des cycles sexuels.

- La contraception d’urgence, ou pilule du lendemain, peut permettre d’éviter une grossesse non désirée.

- En France, l’interruption volontaire de la grossesse (IVG) est autorisée jusqu’à la 14e semaine d’aménorrhée. Pour certains cas médicaux graves, l’interruption de grossesse est possible en dehors de ce délai.

- Pendant toute la durée de la grossesse, mère et fœtus sont surveillés (échographies, tests sanguins). Un diagnostic prénatal peut être proposé en cas de risque de maladie grave (exemple de la trisomie 21).

- Les causes d’infertilité d’un couple sont multiples. Plusieurs techniques peuvent apporter une solution : don de gamète ou d’embryon, stimulation d’ovulation, insémination artificielle, fécondation in vitro, etc.

- Des problèmes éthiques sont soulevés par l’utilisation de ces techniques : problèmes auxquels les lois de bioéthique tentent d’apporter des réponses.
La maitrise de la procréation

Assistante médicale à la procréation et surveillance de la grossesse

- absence d'ovulation
- stimulateurs d'ovulation
- production de spermatozoïdes peu nombreux ou peu mobiles
- insémination artificielle FIV, ICSI

production d'ovocytes
formation de la cellule-œuf
production de spermatozoïdes
FIV, ICSI
realisation d'un DPI
surveillance de la grossesse

- trompes obstruées
- risque de maladie grave ou de malformations

La contraception hormonale

hypophyse au repos, pas de pics de LH et FSH
rétrocontrôle négatif
prise de pilule (progestatifs et œstrogènes de synthèse)
menstruation
cycle utérin artificiel

ovaire au repos, pas d'ovulation
progestérone (en ng·mL⁻¹)
œstradiol (en pg·mL⁻¹)

glaire cervicale imperméable aux spermatozoïdes
ficacité (en cm)