ENSEIGNEMENT DE SCIENCES DE LE VIE ET DE LA TERRE (SVT) BCPST 1 • LYCÉE CHATEAUBRIAND • RENNES (35)

ENSEIGNEMENT DE SCIENCES DE LA VIE ET DE LA TERRE (SVT) °° SCIENCES DE LA VIE °°

>> Cours <<

Chapitre 12: plan complet

Méthodes d'étude et organisation des génomes

Objectifs: extraits du programme Introduction

La nature et l'étude des génomes

- A. Les acides nucléiques, des hétéropolymères (séquencés) de nucléotides porteurs d'une information
 1. L'ADN, support universel de l'information génétique des êtres vivants (cellulaires)

 - a. Une molécule bicaténaire
 - b. Des brins orientables : extrémités 5' et 3'
 - Structure secondaire et tertiaire : deux brins antiparallèles organisés en double hélice
 - d. Une molécule qui respecte les règles de Chargaff
 - e. L'ADN, une molécule séquencée capable de porter une information
 - α. La capacité de porter une information : approche intuitive
 - β. Le caractère universel du codage de l'information génétique : mise en évidence par la transgénèse
 - Un codage par triplets de nucléotides de l'ADN (= codons dans l'ARNm) : le code génétique
 - a. Un système de correspondance (quasi-) universel entre séquence nucléotidique et séquence peptidique
 - β. Un code ponctué : des codons initiateurs et terminateurs de la traduction
 - γ. Un code caractérisé par sa redondance (ou dégénérescence)
 - La notion d'ORF, cadre ouvert de lecture
 - h. L'ADN, une molécule en interaction avec des protéines qui s'exprime, se conserve, se transmet et peut varier
 - 2. Les ARN, des copies plus ou moins transitoires de portions d'ADN concourant à l'expression génétique (ou supports de l'information chez certains virus)
 - a. Les ARN, des acides nucléiques plutôt monocaténaires (pouvant se bicaténariser) constituant des copies de petites portions d'ADN
 - b. Des molécules variées participant à l'expression génétique
 - Étude sommaire d'un exemple : un ARN de transfert (ARNt)

B. Des génomes étudiables par des techniques de biologie moléculaire

- Notions de techniques de biologie moléculaire et biotechnologies
- Les électrophorèses sur les acides nucléiques
 Les méthodes de séquençage des génomes et leurs prolongements
 - a. Le principe d'une méthode historique de séquençage de petits fragments : la méthode enzymatique de SANGER (1977)
 - b. L'existence de techniques plus modernes et moins coûteuses : le séquençage haut débit
 - La possibilité d'aligner les séquences et de rechercher les fragments chevauchants pour aboutir à une reconstitution de longues séquences
 - d. La bio-informatique au secours du séquençage et de l'annotation des génomes ; notions de génomique (structurale / fonctionnelle) et de métagénomique
 - La taille des génomes et sa non-corrélation avec la position phylogénétique des organismes : le paradoxe de la valeur C
 - Le barcoding (et le metabarcoding) : des séquences d'un gène hautement conservé pour désigner les espèces
- L'existence de banques de données assurant la mutualisation mondiale des portions séquencées et des protéines connues
- L'amplification des séquences nucléotidiques
- a. L'amplification de séquences d'ADN : la réaction de polymérisation en chaîne (PCR)
 b. L'amplification de séquences d'ADN issues d'ARN : la PCR après rétrotranscription (RT-PCR)
- Une approche quantifiée de la PCR et de la RT-PCR : la PCR et la RT-PCR quantitatives (= en temps réel) que l'on note qPCR et qRT-PCR
- 5. L'utilisation d'enzymes de restriction dans le découpage de l'ADN
 - a. Des endonucléases bactériennes qui reconnaissent et découpent des séquences-types généralement palindromiques (sites de restriction) b. L'existence de sites de restriction en baïonnette permettant de générer des bouts collants utiles en génie génétique

 - L'utilisation d'enzymes de restriction dans la production de certaines empreintes génétiques
 - d. L'établissement de cartes de restriction
- 6. Des outils de recherche et de détection de séquences nucléotidiques spécifiques
 - a. L'hybridation in situ d'ARN ou d'ADN monobrin
 - b. Des outils de recherche de séquences ADN ou d'ARN exprimés par hybridation avec des sondes : les Blots (buvardages avec emploi de révélateur)
 - α. Principe général
 - β. Southern Blot (ADN), Northern Blot (ARN) et Western Blot (protéines) : diversité des Blots
- c. Vers une automatisation de la recherche des ARN exprimés : les puces à ADN (biopuces), outil majeur en transcriptomique 7. La production d'organismes génétiquement modifiés (OGM) : la transgénèse
- a. Principes généraux et étapes de la transgénèse
 - α. Notion de transgénèse, gène d'intérêt et avantage sélectif
 - β. Principales étapes du processus
 - γ. Intérêts et risques de la transgénèse
- Isolement du gène d'intérêt
- c. Insertion directe ou indirecte du gène d'intérêt (transgène) dans le génome cible
 α. Quelques modalités classiques d'insertion directe : électroporation, micro-injection et biolistique
 - β. Transformation de la cellule cible *via* un vecteur plasmidique ou viral
 - i. Utilisation de plasmides

 - γ. Une technique en plein essor d'édition du génome : les ciseaux génétiques (cas de la protéine CRISPR Cas9)
- Clonage des cellules après insertion du transgène
- α. Principe général
- β. Cas des Bactéries
- v. Cas des 'plantes
- δ. Cas des Animaux
- Criblage génétique : sélection des souches transformées par vérification de l'insertion et de l'expression des transgènes
- 8. L'élucidation de la fonction des gènes
 - a. La possibilité de muter le gène étudié ici en vue de son invalidation : la mutagenèse aléatoire ou dirigée
 - a. La mutagenèse aléatoire : le déclenchement de mutations non maîtrisées par des agents mutagènes (en des lieux variables) ou la PCR mutagène (sur une séquence précise)
 - i. Mutagenèse aléatoire par des agents mutagènes : des mutations à localisation et en nombre imprévisibles
 - ii. L'utilisation de la PCR mutagène : des mutations favorisées lors l'amplification d'une séquence
 - β. La mutagenèse dirigée : le déclenchement de mutations ciblées par PCR mutagène
 - γ. L'édition génomique par le système CRISPR Cas9
 - La possibilité d'invalider un gène par l'introduction d'ARN interférents

- c. La possibilité d'éteindre un gène par recombinaison homologue avec un allèle muté non fonctionnel (knock-out KO) ou de le remplacer par un autre (knock-
- in)
- d. La possibilité d'exprimer un (trans)gène rapporteur ayant même séquence régulatrice qu'un gène dont on cherche à localiser et dater l'expression
- e. La mise en évidence d'une interaction entre une protéine et un acide nucléique par la technique du retard sur gel (EMSA)

II. Le génome des Bactéries

A. Un génome généralement circulaire et localisé dans le cytoplasme

- 1. Un « chromosome bactérien » le plus souvent circulaire et unique situé dans une zone nommée nucléoïde : le génome principal
 - a. Nature et taille du chromosome bactérien
 - b. Localisation fine (nucléoïde) et organisation du chromosome bactérien (condensation modérée et protéines de structure)
- Toc156953367
- Des plasmides, petites unités génétiques fréquentes (mais non systématiques), circulaires, autonomes et transmissibles : le génome facultatif ou accessoire

B. Un génome largement codant et des gènes souvent groupés en opérons polycistroniques

- Peu de séquences répétées et non codantes : un génome largement codant et plutôt compact
- 2. Des gènes non morcelés (= sans introns) et souvent organisés en opérons, unités de transcription polycistroniques dépendant des mêmes unités régulatrices

III. Le génome des Eucaryotes

A. Localisation, organisation et structuration du génome eucaryote

- Vue d'ensemble : un génome protégé comprenant une composante principale nucléaire et une composante mineure cytoplasmique
- 2. Le génome nucléaire, une entité composée de chromosomes linéaires pouvant présenter des niveaux variables de condensation
 - a. Organisation fondamentale : des chromosomes comportant une ou deux chromatide(s) impliquant des protéines associées à l'ADN (dont les histones)
 - b. Degrés de condensation de l'ADN
 - c. L'ADN en interphase
 - α . Notions de chromatine (euchromatine vs. hétérochromatine) et de nucléole(s)
 - β. Une association de l'hétérochromatine avec la lamina nucléaire (LAD) ou le nucléole (NAD), et un regroupement fonctionnel des zones d'expression dans l'euchromatine (usines à transcription)
 - γ. L'importance de l'histone H1 et du complexe de remodelage de la chromatine dans la transition euchromatine / hétérochromatine
 - δ. Une répartition des chromosomes décondensés non aléatoire et localisée : notion de territoire chromosomique
 - d. Le chromosome mitotique (cas du chromosome métaphasique)
- e. Une taille variable du génome nucléaire (en moyenne grossièrement de l'ordre du Gb)
- Le génome extranucléaire, un ensemble de chromosomes de type bactérien codant très partiellement les polypeptides des organites semi-autonomes

B. Des gènes nucléaires morcelés et monocistroniques

- 1. Notions de gène, cistron, locus, allèle, hétérozygotie, homozygotie, dominance et récessivité
- 2. Des gènes morcelés (= gènes mosaïques) chez les Eucaryotes avec des régions non codantes (introns) séparant les portions codantes ou non traduites
 - a. Mise en évidence des introns par hybridation ARN-ADN monobrin (1977)
 - b. Organisation des gènes eucaryotes

C. La présence importante de séquences répétées et d'ADN non codant chez les Eucaryotes

- Mise en évidence des séquences répétitives par les expériences de dénaturation-renaturation de l'ADN
- Nature des séquences répétitives des Eucaryotes

IV. Les virus et leur génome

A. Les virions (= particules virales), état libre des virus

- 1. Organisation : une information génétique enfermée dans une capside et éventuellement une enveloppe
 - a. Une information génétique portée par un acide nucléique
 - $\alpha.$ Un acide nucléique de nature variable qui sert de base à la classification
 - β. Une information réduite compactée et composée de quelques gènes à quelques dizaines, avec une possibilité de chevauchement des cadres de lecture
 - La présence d'une capside protéique protectrice
- c. La présence fréquente d'une enveloppe (= péplos) de nature membranaire
- Les virions, entités composées de matière organique mais acellulaires et « acaryotes »
- 3. Les virions, parasites pathogènes de cellules de tous groupes
- 4. Les virus, entités évolutives à l'origine discutée [pour information]
 - a. Des entités génétiques qui subissent des mutations
 - Petit détour sur les origines du vivant (organismes cellulaires)
 - c. L'origine des virus : diversité des hypothèses possibles
 d. La difficulté de brancher les virus sur l'arbre du vivant

B. Infection, parasitisme et reproduction des virus

- Fonctionnement des virus : une vue d'ensemble
- 2. Modalités de pénétration des virus dans les cellules hôtes (infection)
 - a. Première possibilité : pénétration passive (cas du VMT)
 - b. Deuxième possibilité : fixation sur la cellule hôte (cas du SARS-Cov2 et des phages)
- 3. Les cycles viraux des exemples étudiés en détail
 - a. Vue d'ensemble
 - b. Les deux cycles des Bactériophages (cycle lytique, cycle lysogénique)
 - α. Le cycle lytique, un cycle sans provirus qui aboutit à la libération de nouveaux phages par lyse bactérienne
 - β. Le cycle lysogénique, un cycle latent avec provirus (prophage)
 - α. Un cycle qui coexiste avec le cycle lytique
 - β. Modalités du cycle lysogénique
 - Cycle du Virus de la mosaïque du tabac (VMT)
 - d. Cycle du virus de l'immunodéficience humaine (VIH) [pour information]
 - e. Cycle du SARS-Cov-2

Bilan

Pour faire une fiche de révision : quelques pistes Références Plan simplifié du chapitre (3 niveaux de plan) Plan très simplifié du chapitre (2 niveaux de plan)

